Data-driven topology design using a deep generative model

نویسندگان

چکیده

Abstract In this paper, we propose a sensitivity-free and multi-objective structural design methodology called data-driven topology . It is schemed to obtain high-performance material distributions from initially given in domain. Its basic idea iterate the following processes: (i) selecting dataset of according eliteness, (ii) generating new using deep generative model trained with selected elite distributions, (iii) merging generated dataset. Because nature model, are diverse inherit features training data, that is, distributions. Therefore, it expected some superior current by dataset, performances newly improved. The further improved iterating above processes. usefulness demonstrated through numerical examples.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Data-driven Method for Crowd Simulation using a Holonification Model

In this paper, we present a data-driven method for crowd simulation with holonification model. With this extra module, the accuracy of simulation will increase and it generates more realistic behaviors of agents. First, we show how to use the concept of holon in crowd simulation and how effective it is. For this reason, we use simple rules for holonification. Using real-world data, we model the...

متن کامل

A Deep Generative Model for Disentangled Representations of Sequential Data

We present a VAE architecture for encoding and generating high dimensional sequential data, such as video or audio. Our deep generative model learns a latent representation of the data which is split into a static and dynamic part, allowing us to approximately disentangle latent time-dependent features (dynamics) from features which are preserved over time (content). This architecture gives us ...

متن کامل

A Generative Model for Deep Convolutional Learning

A generative model is developed for deep (multi-layered) convolutional dictionary learning. A novel probabilistic pooling operation is integrated into the deep model, yielding efficient bottom-up (pretraining) and top-down (refinement) probabilistic learning. Experimental results demonstrate powerful capabilities of the model to learn multi-layer features from images, and excellent classificati...

متن کامل

A Deep Generative Deconvolutional Image Model

A deep generative model is developed for representation and analysis of images, based on a hierarchical convolutional dictionary-learning framework. Stochastic unpooling is employed to link consecutive layers in the model, yielding top-down image generation. A Bayesian support vector machine is linked to the top-layer features, yielding max-margin discrimination. Deep deconvolutional inference ...

متن کامل

GraphRNN: A Deep Generative Model for Graphs

Modeling and generating graphs is fundamental for studying networks in biology, engineering, and social sciences. However, modeling complex distributions over graphs and then efficiently sampling from these distributions is challenging due to the non-unique, high-dimensional nature of graphs and the complex, non-local dependencies that exist between edges in a given graph. Here we propose Graph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Structural and Multidisciplinary Optimization

سال: 2021

ISSN: ['1615-1488', '1615-147X']

DOI: https://doi.org/10.1007/s00158-021-02926-y